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An analogy between the spin-2 and superspin-; equations of 
motion 

R K Loide 
Tallinn Polytechnic Institute, 200 026 Tallinn, USSR 

Received 30 April 1984, in final form 21 January 1985 

Abstract. The general schema for obtaining covariant wave equations is given. The structure 
of possible equations for a symmetrical tensor field describing spin-2 and -0 is examined. 
The general form of superfield equations of motion is proposed. The structure of possible 
equations for vector and scalar superfields describing superspin-: and -0 is examined. The 
derivation of equations for a symmetrical tensor field is analogous to the derivation of 
superfield equations for vector and scalar superfields. 

1. Introduction 

The development of supergravity (van Nieuwenhuizen 1981) points out the importance 
of spin-; amd spin-2 particles. For that reason it is useful to investigate the possible 
description of spin$ and spin-2 states more thoroughly. In our previous paper (Loide 
1984), the full description of equations for a vector-bispinor is given. A vector- 
bispinor allows us to describe spin-; and spin-f states in massive and massless cases. 
In the case of spin-2 state, a symmetrical tensor h@” is mostly used. In this paper we 
give the full description of second-order wave equations for a symmetrical tensor h””. 

The supersymmetry introduces more complicated objects-superfields (Salam and 
Strathdee 1974), which contain ordinary Bose and Fermi fields. The irreducible 
multiplet with a superspin Y contains in the massive case the following PoincarC 
spins--s = Y - f, Y,  Y, Y +:. Since the superfields are reducible, similar equations of 
motion as in the ordinary field case are needed. The role of superfield equations of 
motion is therefore to describe a given superspin Y with a given mass m, or several 
superspins with given mass spectra. The full theory of superfield equations of motion 
has not yet been worked out. It seems that the principles that are used in the ordinary 
wave equations case work also in the superfield case. Ogievetsky and Sokatchev (1976, 
1977a,b) generalised the root method into the superfield case. However the root 
method is not the most general one and there are superfield equations of motion which 
are not derivable via the root method (Loide and Suurvarik 1983). Here we show that 
the method of spin projection operators used in the ordinary field case may be 
generalised into the superfield case. As an example, we give the superfield equation 
for vector and scalar superfields, which describes single superspin-; or superspins-: 
and -0. Superspin-4 was previously described with the help of the vector superfield 
h ” ( x ,  0)  (Ogievetsky and Sokatchev 1976, 1977a, b), but this equation describes also 
superspin-0 states having unphysical mass. Scalar superfield is introduced to eliminate 
superspin-0 states or to give them physical masses. We also demonstrate that the 
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2834 R K Loide 

derivation of equations for a symmetrical tensor field h p u ( x )  is entirely analogous to 
the derivation of superfield equations for a vector and scalar superfields h P ( x ,  e )  and 

The paper is organised as follows. In 0 2, the general formalism of spin projection 
operators is introduced. In §§ 3, 4 and 5 ,  equations for a symmetrical tensor h P ” ( x )  
are studied. The general form of superfield equations of motion is introduced in § 6 
and, in 0 7 ,  the case of vector and scalar superfields is illustrated. In the appendix, 
the superfield projection operators are given. 

4 ( x ,  6 ) .  

2. General formalism of spin-projection operators 

At the beginning we briefly discuss the construction of wave equations, using the 
formalism of spin-projection operators. The basic principles were recently given in 
Loide (1984). Here we add the covariant form of equations. 

Let us deal with the nth-order equation 

i a,, . . , i aPnP”l””‘n+(x) = m“t,b(x), 

, (2.2 [ S P Y ,  P P 1 . . . P . ] = C  7 7 w , p P l . . . P . . . P ”  - rl””lp” ,..‘U-. P“ 

[ S P Y ,  S P U ] =  r l ~ P ~ c ~ + 7 7 7 7 ~ ~ ~ P _ r l P P ~ ” ~ ~ 7 ) ~ ~ ~ P P ~  

(2.1 

where the matrices PPl..+”‘ satisfy the following commutation relations 

and r lPu  = diag(+---). The generators of the Lorentz group SP“ satisfy 

(2.3) 

In spite of the fact that only the first- and second-order equations are usually used, 
since the higher-order equations give the mass spectrum where unphysical masses are 
present, the higher-order equations appear in some recently used methods. The root 
method (Ogievetsky and Sokatchev 1976, 1977b, Berends et a1 1979, Berends and van 
Reisen 1980), for example, also operates with higher-order equations. 

In the non-covariant form, where the mass and spin spectrum is mostly analysed, 
the problem reduces to the derivation of Po...’ matrix. In the representation where CC, 
is decomposed into the direct sum of irreducible representations i = ( ki, li): 1 0 2 0 .  . . 0  
r, Po...’ has a general form (Loide 1972) 

P O.. .O I :  
(2.4) 

where uij are arbitrary free parameters. The matrices tu are expressed with the help 
of spin-projection operators t ;  as 

where the summation is over all common spins in representations i and j .  

coefficients 
The spin-projection operators t ;  are expressed with the help of Clebsch-Gordan 
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and satisfy 

(there is no summation over j ) .  
The coefficients aij(s) in (2.5) are, in general, not arbitrary but depend on the order 

of equation n, on the representations i and j ,  and on the spin s. The general relations 
for au(s) were given in Loide (1972). In the case of first-order equations these 
coefficients are well known (see, e.g. Loide 1984a). 

Now we shall discuss how the covariant form (2.1) is expressed with the help of 
matrix Instead of ti, one must derive covariant spin-projection operators Pi;. 
which satisfy the same relations as ti 

P i p ; ;  = ass'P;k. (2.8) 

Here we exploit the covariant operators ll; previously used by Weinberg (196'4a, b, 
1969), Pursey (1965) and Tung (1966, 1967) 

where ti?,-'= ti and 

I = 2 min{( ki + k j ) ,  ( I i  + h)} .  (2.10) 

If we define non-local operators Pi 

(2.11) 

0 =a ,  a", the operators Pi satisfy the required relations (2.8). From (2.10), P i  contain 
non-local terms depending on the representations i and j up to 

The covariant form (2.1) is expressed in a different but equivalent form 

( -n )n /2po , -o (a )$ (x )  = m"+(x),  (2.12) 

where P 0 " . O ( a )  is 

(2.13) 

and 

Pij = E  (Yi j (S)Pi .  (2.14) 
5 

Comparing (2.13), (2.14) with (2.4), (2.5), it is easy to see that one must change 
t i+ P i .  When the coefficients a i j ( s )  are not known, then the following remark is 
useful-ao(s> must be so chosen that the non-local terms in Pij are not higher than 

In § 6 we generalise the last form (2.12)-(2.14) into the superfield case where one 
must find the corresponding superspin projection operatqrs E ; .  
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The mass and spin spectrum is determined with the help of reduced matrices PS 
formed from the coefficients ai,aij( s) 

(2.15) 

If ps has non-zero eigenvalues Ai, then the masses corresponding to a given s are 
m(Ai)-””. In the case of first-order equations the non-zero eigenvalues are * A i  and 
the corresponding mass i s  mA;’. In the case of second-order equations, the mass 
corresponding to a non-zero eigenvalue Ai is mh;’’2. 

3. Equations for h” 

In this section we shall illustrate the general method given in § 2 for the case of 
second-order spin-2 equations for a symmetric tensor h”“ (h”” = h ” ” ) .  h”’ is represen- 
ted as a direct sum of two irreducible representations 1 = (1 , l ) :  H”” = h”” - $ 7 ” ” h P p  
and 2 = (0,O): h = $hPV 

We shall start to deal with the representation 1. Covariant spin-projection operatbrs 
P i ,  are calculated with the help of covariant spin operator S z =  
;(S””S”” + (28” a’/u)S”~s”,) 

PI1 = a(2)P: ,  + a ( l ) P : ,  + a(O)P?, 

4a(2)-;a(l)+$a(O) =o. (3.3) 

(3.2) 

where a ( s )  satisfy (Loide 1972) 

As we have noted in § 2, when the coefficients a ( s )  are not known, they must be 
so chosen that in the case of the second-order equation PI, has non-local terms up to 
U-’. It is easy to verify that a ( s )  which satisfy (3.3) eliminate non-local terms I T 2 .  

Due to the relation (3.3), all three spins may be present in our equation or one of 
them may be eliminated. If we want to describe spin-2, then ( ~ ( 2 )  # 0, but a(1)  or 
a ( 0 )  may be chosen equal to zero. Usually spin-1 is eliminated and we set a (1)  = O .  
We choose a (2)  = 1, then a ( 0 )  = -+ and PI, has a form 

PI1 = P: ,  -fP?,. (3.4) 
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Recently the higher-order representations are used to describe lower spins (Deser 
et a1 1981, Cox 1982). Using h””, it is possible to write down an equation which 
describes spin-1, or spin-1 and spin-0 particles. In that case one must set a(2) = 0, 
a ( l ) = l  and a(O)=;. 

From (3.4) it is obvious why the scalar representation 2 = (0,O) is needed. If we 
write an equation -OP,,JI, = m2J11, spin-0 is present and has non-physical mass id2m. 
The representation 2 is therefore used to eliminate spin-0 states, or to give to spin-0 
states physical mass. In the case of scalar representation, P;2 is 

(3.5) ( p;,)”” - 1 ‘ ”” 
K A  -477 7 7 ~ ~ .  

The covariant operators P:, and P;, which satisfy (2.8) are the following 

(3.6) 

The general covariant equation is obtained as follows. We choose a,, = 1 (then 
s = 2 state has mass m) and denote a,, = a, aI2 = by a,, = c. Then (2.12) takes the form 

(3.7) 

Using the expressions of operators PG, JI,  and J12, we have from (3.7) 

Ohp” -a* a ,hK”-a”  aKhKp + f T w v  a ,  aAhwA +(f-$hb) a” a”hP, 

7 7 p y [ - i ~ a  a ,  aAhKA + $ ( $ h a  + c)O hP, + m2fhp , ]  = 0.  

The last system may be written as an equation for symmetrical tensor h””. If we add 
these two equations, we obtain 

+&6b-3)77””0hpp+ m2(hw”-f .r lp”hP,)  =0, 

O h w ” - a w  a ,hK“-au  a ,hKw+( f -$&)y ’a ,  dAhKA 

+ (f - G b )  a” a”hP, + #h( a + b) + 2c - 3177 ’”0 h P ,  + m2 h”’ = 0 .  
(3.8) 

The most general equation for h’” describing spin-2 and spin-0 states has, therefore, 
the following general form 

O h w ” - a w  a , h ~ ” - a ” a , h K p + A ~ ~ ’ a ,  a A h “ ” + ~ a ”  a ’ h P , + C ~ p ” O h P , + m 2 h C I Y  =o. 
(3.9) 

The relation between the coefficients a, b, c and A, B, C is the following 

A = a ( h - 2 ~ )  

B = &6(h - 26) 

C =&(2a + 2 b + 2 & - 3 h )  

a = G( 1 - 2 A )  

b = gi( 1 - 2 B )  

c =i (2A+2B+8C + 1). 

(3.10) 

As we have seen in this section, the ordinary procedure for obtaining relativistically 
invariant equations work also in the covariant case, one needs only covariant spin- 
projection operators Pb. Sometimes the other method-the root method is used 
(Ogievetsky and Sokatchev 1976, 1977b, Berends et a1 1979, Berends and van Reisen 
1980). In principle the root method operates with the same operators P; ,  but it starts 
from the higher-order equation (-0 )”2P:iJI = m’+, which guarantees that the needed 
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spin s is extracted, and then the first- or second-order equation is derived, which leads 
to the equation we started with. The root method allows us to obt$n equations where 
some single-spin state is present; in the multi-particle case it is not applicable. In our 
method we first construct the most general equation of the required order and then 
the analysis of mass and spin spectrum reduces to a pure matrix-algebraic problem. 
In the next section we explain the latter procedure in the case of the equation for a 
symmetric tensor hp” .  

4. Massspectrum 

To determine the mass spectrum it is useful to decompose Pm(a) = P 2 ( d )  + Po((a). From 
(3.7) 

(4.1) 

The investigation of eigenvalues of matrices P 2 ( a )  and Po((a) reduces to the investigation 
of 2 X2 matrices P2 and Po formed from the coefficients a,a,(s) 

Masses corresponding to a given spin s are determined with the help of non-zero 
eigenvalues A i  of matrix Ps in the following way mi = mA;1/2. P2 has one non-zero 
eigenvalue A = 1,  which means that the spin-2 state has mass m. The mass spectrum 
of spin-0 states depends on the choice of free parameters a, b and c. By a proper 
choice of these parameters equation (3 .7)  describes two, one or no spin-0 states. 

Next, we give a detailed analysis of spin-0 mass spectrum. The eigenvalues of Po 
are calculated from 

4A1,2=2c - 1 * [ ( 2 ~ +  1)’+ 16~1bI”~. (4.3) 

As we can see, A I  and A 2  depend on two free parameters ab and c. In order to have 
physical masses, A I  and A 2  must be real and non-negative. It leads to the following 
restrictions 

C S i ,  2ab + c s 0, (2c + 1)’+ 16ab 2 0. (4.4) 
The region determined by the relations (4.4) is called the physical region since it 

gives the physical mass spectrum. The physical region is determined by the line 
2ab + c = 0 and parabola (2c+ 1)’+ 16ab = 0. 

The points on the line 

2ab+ c = 0 (4.5) 
give the eigenvalues 

A ~ = C - ; ,  A 2 = 0 .  (4.6) 
This equation describes in addition to spin-2 state one spin-0 state with mass mA-’l2. 
Po satisfies po(po-Al) = 0. 

The points on the parabola 

(2c+ 1 ) 2 +  16ab = 0 (4.7) 
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give coincident eigenvalues 

A I  = A2=4(2~- 1). (4.8) 

These points must be treated as unphysical since p gives the minimal polynomial 
(po -A , )2=0 .  Po has only one eigenvector and gives vanishing energy density (see, 
e.g., Cox 1977). 

The other points in the physical region (4.4) give two different non-zero eigenvalues 
A l  and A2, and describe two spin-0 states with masses mA;’I2 and mA;’I2. 

If we want to describe the single spin-2 state, we must choose A I  = A 2  = 0. From 
(4.6) and (4.8) we have 

ab = -1 4, c=L 2.  (4.9) 

In the case of spin-2 equation Po and also po(a) are nilpotent: 
As is well known (Velo and Zwanziger 1969), single particle equations have in 

general acausality defects when the external fields are present. In Vel0 (1972) it is 
demonstrated that acausality is present also in the spin-2 equation for hPV. In the case 
of first-order equations acausality is connected with the essential nilpotency of p 
matrices (see, e.g., Loide 1983). In our case spin-2 equation contains also nilpotent 
matrices, since Po((a) is nilpotent, and for that reason it seems that in the case of 
second-order equations the origin of acausality is the same-it is caused by nilpotent 
states. In the case of first-order equations acausality is absent when the p matrices 
are diagonalisable (Amar and Dozzio 1975). The acausality problem for second-order 
equations seems more complicated (Amar et a2 1980), and it is not known whether the 
equations with diagonalisable p matrices are causal in the presence of minimal 
electromagnetic coupling. From our results there seems no reason for the equations 
with diagonalisable matrices to have acausality defects, since the method of characteris- 
tics used in Velo and Zwanziger (1969) leads to the spacelike normals and causal 
propagation in the case of diagonalisable p matrices when A I  # 0 and A z  # 0. 

In our previous analysis we have solved the following problem-how to determine 
the mass and spin content of a given equation (3.9). In that case the coefficients A, 
B and C are known. From (3.10) one calculates a, b and c, and then the eigenvalues 
A ,  and A2, which determined masses of spin-0 particles, are calculated from (4.3). 

The inverse problem-how to find an equation with a given mass spectrum can 
also be easily solved. From the masses of spin-0 states one finds eigenvalues A I  and 
A2. The coefficients ab and c are obtained as follows 

= 0. 

a b =  - A l A 2 - f ( A l + A 2 ) - ~ ,  

c = A , + A 2 + ~ .  
(4.10) 

5. Invariant scalar product, Lagrangian 

Invariant scalar product which defines the Hermitising matrix A is obtained similarly 
as in the case of equations for a vector-bispinor (Loide 1984) 

(h ,  h )  = h+Ah = h’ PV h P u  -$(l- b /a )h’PPh” ,  (5.1) 

(we have chosen a and’b to be real). 



2840 R K Loide 

If we introduce the conjugated wavefunction 

&” = h&,E77;77:-:(1 -b/a)TF77,”l (5.2) 

L = - (a ,6)pP”(a ,h)  + m 2 h  

the equation (3.11) is obtained from the following Lagrangian 

(5.3) 
Usually L is varied with respect to h& and then the equation obtained has a mass 

term m2(Ah)*”,  and not m2h”” as in our case. We illustrate the difference in the case 
of single spin-2 equation which is written in the form (Ogievetsky and Sokatchev 1976, 
1977b) 

l + a  
1 + 2 a  

n h p v - a *  a , h K Y - a ’ a , h K p  +-(77pya.  a ,hKA+a* a”hP,) 

2 + 4a + 3a2 l + a + a 2  
2(1+2a)  ( l+2a )2  - 7 * ’ ” 0 h P  - m2r]””hp, + m2hp” = 0, (5.4) 

where a Z -4 is an arbitrary free parameter. 
Our spin-2 equation has a form (ab  = -a, c = 4) 

113 hpY -a* a,h“’ -a”  aKhK* + (d - ;&a) 77’’” a ,  a,h 

+(;-f&b)a* a ’ h p , + & 6 ( a +  b ) - 2 ] ~ p u 0 h ~ , + + 2 h * u = 0 .  ( 5 . 5 )  

a = iJ?( 1 + 2a) ,  

It is easy to verify that the relation between a, b and a is the following 

b = -J5/2( 1 + 2a) ,  (5.6) 

and ( 5 . 5 )  is obtained from (5.4), multiplying it by ( $ r 7 7 u u  -$(1+ a + a2)7)”77,,). 
To conclude this section, we shall briefly discuss the zero rest mass case. At the 

beginning we determine the coefficients A, B and C in (3.9), which in the case of 
m2 = 0 is invariant under gauge transformations 

We get A = -C and B = 1, which gives 

&a = c, b = -+A. (5.8) 
These points lie on the line (4.5) which, in the massive case, describes one spin-0 state. 
The zero mass equation is obtained if in addition to gauge transformations (5.7) we 
demand that a p ( a p  aup’u)pux,hYh = 0. It gives A = B = -C = 1, and the equation has 
a well known form (Ogievetsky and Sokatchev 1976, van Nieuwenhuizen 1981) 

Ohpu-a* a , h K ‘ Y - a Y a , h K f i + ~ * Y a K  a,,hKA+a* a ‘ h P , - ~ p Y O h p p = O .  (5.9) 

As we have seen the equation which leads to the zero mass limit is different from 
the equation which describes in the massive case the single spin-2 state, since these 
equations correspond to the different choice of coefficients a, b and c (or A, B and 
C ) .  This fact explains the van Dam-Veltman theorem (van Dam and Veltman 1970) 
recently discussed in Berends and van Reisen (1980). The Van Dam-Veltman theorem 
states that for higher spins the m -f 0 limit of the amplitude for the exchange of a 
massive higher spin particle between two external sources is different from the 
amplitude for the exchange of a massless particle. These two amplitudes must be 
different since the equations in the massive and massless cases are different. From 
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(5.2) also the scalar product depends on the choice of coefficients a and b. The same 
situation takes place in the spin-; case too where the massive spin-; equation differs 
from the equation which admits zero mass limit (Loide 1984). 

In this paper we have demonstrated that the ordinary method discussed in 0 2 
allows us to investigate the general structure of all equations with a given J/ representa- 
tion. The equations which leads to the zero mass limit are in the massive case in 
general multi-particle equations and for that reason the investigation of all equations 
with a given J/ representation is useful. When it concerns the root method, frequently 
used (Ogievetsky and Sokatchev 1976, 1977b, Berends et al 1979, Berends and van 
Reisen 1980), it should be remarked that this method allows us to derive in general 
only single-particle equations. 

6. Superfield equations of motion 

In the superfield case analogous equations as in the ordinary field case are needed. 
The role of superfield equations of motion is to describe a supermultiplet with a given 
mass and superspin Y, or several masses and superspins. 

Ogievetsky and Sokatchev (1976, 1977b) generalised the root method into the 
superfield case and proposed some superfield equations of motion. As in the ordinary 
field case, the root method is not the most universal one. There are equations which 
are not derivable via the root method, as, for example, the equation for chiral spinor 
superfield proposed by Salam and Strathdee (1975). In this section we generalise the 
ordinary method of 0 2 into the superfield case. 

The general superfield with a Lorentz index i is the following 

4 i ( ~ ,  e )  = A ~ ( x ) +  J J / ~ ( x )  + f B e F i ( x )  + f i i y 5 e c i ( x )  

(6.1) +'& P 5 e A , i ( x ) + f e e e x i ( x ) + ~ ( e e ) 2 0 i ( x ) .  

We use the following notation: is a four-component anticommuting Majorana 
spinor, e ,  = cj:e,, c = iyoy2, { y P ,  y " }  = 277Pv, y 5  = y 0 y i y 2 y 3 .  

Now we are able to give the general method for deriving superfield equations of 
motion for a superfield @(x, e) .  We use a representation where @(x, 6 )  is a direct sum 
of superfields +i(x ,  0 )  which transform under Lorentz group according to some irreduc- 
ible representation (k, Z i ) .  Now we propose that there exists a set of superspin- 
projection operators E ;  which satisfy the relations similar to (2.8) 

EiE?; = S,,,.E;'. (6.2) 

The general nth-order superfield equation for @(x, 6 )  may be written in the following 
form 

( - n ) n / z T o . . . O  @(x, e )  = m " @ ( x ,  e) ,  

where  IT'...^ is 

7To...o - - 
' I  

41 
4 2  

(6.3) 

(6.4) 
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and E ,  are the following 

E,,=C a l , (Y )E; .  (6.5) 
Y 

Since we have no general expressions for a,,( Y ) ,  these coefficients must be chosen so 
that for a nth-order equation (6.3) maximal non-locality of all operators E,, is not 
higher than 

The analysis of superspin and mass spectrum of the general equation (6.3) is the 
same as in the ordinary field case. One must decompose 

(6.6) To O = T Y I  + # 2 + .  . . + TY,, 
where rY contains projection operators EY, of a given superspin Y.  Masses correspond- 
ing to a superspin Y are determined with the help of non-zero eigenvalues of matrix 
T, formed from the coefficients a,,a,,( Y )  

(6.7) 

as follows: m, = m(A,)-”“, where A ,  is some non-zero eigenvalue of ry 
Now the problem reduces to a construction of operators E ; .  Operators E: are 

ordinary superspin-projection operators. The expressions of superspin-projection 
operators for a general superfield 4,(x, 8) are given in the appendix. Projection 
operators for scalar superfield 4(x, 0 )  were given by Salam and Strathdee (1975), and 
for symmetrical tensor and tensor-bispinor superfields ,,(x, e ) ,  &ILl Jx, e )  the 
projection operators were given by Sokatchev (1975). Using the second Casimir 
operator of supersymmetry algebra, it is possible to derive projection operators for a 
general superfield 4,(x, e) .  

In the following section we illustrate the general schema in the case of superspin-; 
equation for vector and scalar superfields. Superspin-2 contains PoincarC spin-2 and 
-;, and for that reason the given equation may be useful in supergravity. 

7. Superspin-; equation 

In this section we demonstrate that superspin-; must be described with the help of 
two superfields: vector superfield &(x, 6) = h’(x,  0 )  and scalar superfield &(x, 6 )  = 

4 ( x ,  6 ) .  
We shall firstly deal with the vector superfield h p ( x ,  e) .  The superspin-; projection 

operator, which we denote as E:(2 ,  is the following (A5) 

A -  = (E:’*)*A = 3[ 1 f (i/m)( Do)’]( vK,+ - 8“ 8~ /U) - (1 /60 )  d P E p ~ “ ~ L ) i y u y 5 ~ .  
(7.1) 

Since E : { 2  contains non-local terms and we want to give a second-order equation, 
we must use other operators ETl to eliminate this non-local term. There are three 
possibilities: superspin-1, -f or -0 projection operators. Similarly as in the case of 
symmetrical tensor h ” ” ( x )  we use the operators of lowest superspin-0. In analogy to 
Ogievetsky and Sokatchev (1966, 1977a), we take the operator E:++ E:-  (from the 
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considerations of symmetry it is not possible to prefer one of the chiral components 
+ or -) and denote it as E : , .  From (A51 

( E : , ) " ,  =-(1 /4[7) (DD)2dK dA/O. (7.2) 

Now it is easy to see that the operator E:{2-fEY, has the required non-locality 
U-'. From the considerations of the root method the same operator was derived by 
Ogievetsky and Sokatchev (1976, 1977a). 

If we use only the vector superfield h p ( x ,  e), we obtain the following equation 
(Ogievetsky and Sokatchev 1976, 1977a) 

- U ( E : { ~ - ; E Y , ) " , ~ ~ ( X ,  e)  = m 2 h K ( x ,  e). (7.3) 

Equation (7 .3)  describes superspin-: with mass m and superspin-0 with non-physical 
mass im(t)'/2. 

In order to eliminate superspin-0 or describe it with physical mass spectrum we 
introduce the scalar superfield 4 ( x ,  0) from which we extract superspin-0. The corre- 
sponding projection operator is (A7) 

E:2 = - ( 1 / 4 0  )( DD)'. (7.4) 

It remains to obtain operators Ey2 and E : ,  which satisfy (6 .2) .  It is possible to 
verify that EY2 and E : ,  are the following 

( ~ 7 ~ ) ~  = DD a K / 2 n  ( E : , ) *  = - D D d A / 2 n .  (7.5) 

The general equation for h"(x ,  e )  and 4 ( x ,  e )  is the following from (6.3) (we take 
a , ,  = 1, a2,  = a, all  = b, a22 = C )  

(7.6) 
( E : { 2 - S E : l ) K A  h"x, 0) = , 2  h K ( x ,  6 )  

a ( E Y I ) A  tE:2Yl I4(x, e) I I 4 ( X 7  e) 1 .  
Using the expressions of operators E ; ,  (7.6) may be written as 

:[(U + $ ( D D ) 2 ) h " ( x ,  0) - a K  d , h A ( x ,  e)]-bd".,,"~DiyUy5DhA(x, 0) 

+Do aAhA(x, e) - $ c ( D D ) ~ ~ ( x ,  e ) +  m 2 4 ( x ,  e )  = 0. 

The equation obtained describes superspin-; with mass m and depending on the 
choice of parameters a, b and c two, one or no superspins-0. The analysis of mass 
spectrum is the same, as in § 4. We decompose roo = T ~ ' ~ +  T O  

+ $ b D D d " d ( x ,  e ) + m 2 h K ( x ,  e ) = o ,  (7.7) 

and now the investigation of the mass spectrum reduces to the investigation of non-zero 
eigenvalues of matrices T ~ , ~  and no 

The only non-zero eigenvalue of ~ 3 / 2  is equal to 1 and therefore the corresponding 

(7.10) 

mass is equal to m. The eigenvalues of no are calculated from 

6 A 1 . 2  = 3c  - 2 *  [ ( 3 ~  + 2 ) 2 +  36abI"'. 
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In order to have the physical mass spectrum, ab and c must satisfy 

C L ; ,  3ab + 2 c  S 0, (3c + 2)’+ 36ab 2 0. 

The physical region of parameters is determined by the line 

3 a b + 2 c = 0 ,  

where the eigenvalues are 

A 1 - c - Z  - 3, A 2 = 0 ,  

and by the parabola 

(3c + 2)’+ 36ab = 0, 

which gives coincident eigenvalues 

(7.11) 

(7.12) 

(7.13) 

(7.14) 

A I  = A 2 = : ( 3 ~  - 2 ) .  (7.15) 

The points on the line (7.12), therefore, in addition to superspin-; describe one 
superspin-0 with mass mh;”’. The points on the parabola may be regarded as 
unphysical since ro satisfies ( ro - = 0 and has for that reason only one eigenvector. 
The other points in the physical region determined by (7.11) give different eigenvalues 
A I  # A’, and describe two superspins-0. 

Single superspin-; is described by the parameters ( T O  is nilpotent) 

a b  = -5 9 ,  c = 2  3.  (7.16) 

The inverse problem-how to find a superfield equation with given mass spectrum 
of superspin-0 states-is solved similarly as in 9 4. From the masses we determine A I  
and A*, and then the coefficients ab and c are calculated from 

(7.17) 

As we have seen in this section, the general schema proposed in 9 6 works similarly 
as in the ordinary field case. It also works in the case of known equations for scalar 
and bispinor superfields. 

To conclude thissection, it is interesting to note that in our case the projection 
operators E ;  had the following decomposition 

EO, = g&, (7.18) 

where 8, satisfy 8,8,k = 8 , k ,  and Pi Satisfy (2.8), i.e. both factors are projection 
operators. 

8 2 2 =  - ( 1 / 4 0 ) ( b D ) 2 ,  8,, = - = ( 1 / 2 J E ) d D ,  (7.19) 

(PYlY” =CY J ” / O ,  ( pY2)fi = afi/JE, (p% = a,/JE, P;z = 1 .  
(7.20) 

Operators (7.20) give the system of covariant spin-projection operators for vector and 
scalar fields. The well known Kemmer-Duffin spin-0 equation is, from (2.12), the 
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following 

It should be remarked that the decomposition (7.18) is always possible, as it is also 
seen from the general expressions of projection operators (Al ) ,  but the factors 8, are 
not, in general, projection operators. In the chiral superfield case the factors 8, are 
certainly projection operators, otherwise-they are not. 

8. Conclusions 

In this paper the full description of all second-order equations for a symmetrical tensor 
field h p ”  describing spin-2 and -0 states has been given. The general principles which 
are used in the ordinary field case are also applicable in the superfield case. The 
general form of superfield equations of motion has been proposed. As an example, 
the superfield equation for vector and scalar superfields describing superspins-; and 
-0 has been given. It is demonstrated that the derivation of equations for a symmetrical 
tensor field hPu is entirely analogous to the derivation of superfield equations for vector 
and scalar superfields h” and 4. 

Here we outline once more the general procedure of how to write down an equation 
corresponding to a given mass spectrum, or to establish the particle content and masses 
of a given equation. 

8.1. Equations with given mass spectrum 

8.1.1. Spin-2 and -U. Spin-2 has mass m, choose the masses of spin-0 particles mA;”’ 
and mA;”2. Parameters ab and c are determined from (4.6), (4.9) or (4.10). Now we 
choose a, b and c, and the corresponding equation is given by (3.8). 

8.1.2. Superspin-$ and -U. Superspin-$ has mass m, choose the masses of superspin-0 
states mh;’” and mh;’”. Parameters ab and c are determined from (7.13), (7.16) or 
(7.17). Now we choose a, b and c, and the corresponding equation is given by (7.7). 

8.2. Masses and particle content of a given equation 

8.2.1. Spins-2 and -0. Equation (3.9) is given. Parameters a, b and c are then determined 
from (3.10). Formula (4.3) gives the eigenvalues A I  and A2, which in turn determine 
the masses and particle content. 

8.2.2. Superspin-: and -U. Equation (7.7) is given. Formula (7.10) gives the eigenvalues 
A I  and AZ, which in turn determine the masses and particle content. 

Appendix. Superfield projection operators 

We give the superspin-projection operators for a general superfield 4 i ( x ,  6 )  which 
transforms under Lotentz transformations according to some irreducible repre- 
sentation ( k ,  I ) .  PoincarC spins s contained in the representation ( k ,  1 )  are: s = 
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k +  1, k +  1 - 1, . . . , Ik - 11. To each PoincarC spin s corresponds four superspins Y = 
s +;, s, s, s -+which are extracted with the help of projection operator E" (Loide 1984b) 

Es+'/' = (2s + l)-'[ 1 + ( 1 /40) (  f iD) '][  s + 1 - (U40 ) aKEKppuSPudi  y"y5D]Ps 

E : =  -(1/8O)[(DD)'+2i d ,~ iyFy5D]Ps  

E'= -(1/8O)[(DD)'-2i d,Diywy5D]PS 
E s - 1 / 2  - - (2s+ l)-'[l +(1/40)(fiD)2][s+(1/4CI) a " ~ ~ , ~ ~ S ~ " ~ i y " y ~ D ] P ~ .  

Here D, is the covariant spinor derivative (Salam and Strathdee 1975) 

and P' are the projection operators of PoincarC spins (in the terminology of § 2 P' = Pyi). 
Projection operators for vector superfield h @ ( x ,  6 )  are obtained as follows. The 

generators Spu are 

( S P U ) " ,  = T P K v - ,  - v U " v P , ,  (A31 

( P I ) " ,  = vK, - a K  a,/U, (PO))", =a" d , / o .  (A41 

and spin projection operators PI, Po 

To the PoincarC spin-1 correspond superspins Y = 2, 1, 1 and 4 which are extracted 
with the help of projection operators 

( E : ' ~ ) " ,  =:[I + ( 1 / 4 ~ ) ( D D ) 2 ] ( ~ K A  - a K  a,,/n) - (1/60) a P ~ p u K A D i y u y 5 ~  

(E;,)",,  = -(1/8O)[(fiDl2+2i arDiypy5D1(vK, -8" a,,/O) 

( E : - ) " ,  = -(1/80)[(DD)2-2i a ,~ iyf iy5D1(vKA -8" dA/D) 

(E;/')",, =$l +(1/4U)(DjD)*](v"A - a K  a A / 0 ) + ( l / 6 U )  ap~, ," , ,~iyuy5D. 

To the PoincarC spin-0 correspond Y = f, 0, 0 

(-45) 

(E;'*)"A =[ l+ ( l /40 ) (DD)2]dK dA/U 

(E:,)", = -(1/8Cl)[(fiD)'+2i d,Diy'y5D]dK aA/U 
(E:-)", ,  = -(1/80)[(DD)'-2i d,D'iyPy5D] a" a,/n. 

(A61 

Here the lower indices denote the corresponding PoincarC spins, + and - distinguish 
the corresponding chiral components. 

In the case of scalar superfield 4(x, 0)  the projection operators are (Salam and 
Strathdee 1975) 

El/ '  = 1 + (1/4O)( bo)' 
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